PHYS 301 Electricity and Magnetism

Dr. Gregory W. Clark Fall 2019

Today!

- ➤ Magnetic fields
 - ➤ Force Law
 - ➤ Law of Biot-Savart
 - ➤ Ampere's Law

magnetostatics

THE LORENTZ FORCE LAW

• In the presence of both electric and magnetic fields, \vec{E} and \vec{B} , a charge, Q will experience a force

$$\vec{F} = Q(\vec{E} + \vec{v} \times \vec{B})$$

where \vec{v} is the velocity of the charge, Q.

• NOTE THAT ...

Magnetic fields do no work!

They may alter the direction a particle moves but they cannot – but they cannot alter its speed!

Expectations: "locally," the magnetic field for a current-carrying wire looks like this:

! what's the direction of
$$\vec{J}_1$$
 heat?

! what's the direction of \vec{J}_2 heat?

! what's the direction of \vec{J}_3 heat?

[since $\vec{J} = d\vec{I} / dA_1$, then $I = \int_{surface} \vec{J} \cdot \hat{n} \, dA$]

magnetostatics